VIBRATIONS OF GEOMETRICALLY NONLINEAR VISCOUS-ELASTIC CYLINDRICAL SHELLS INTERACTING WITH AN ELASTIC MEDIUM

نویسندگان

چکیده

This article examines the nonlinear vibrations of a thin-walled structure such as cylindrical shell interacting with ground. On basis seismodynamic theory underground structures, nature movement is revealed depending on stiffness coefficient and rheological properties soil, well frequency external influences. When solving specific problems, seismic waves in form sinusoid are considered. Nonlinear integro-differential equations describing structures laid ground solved approximately following sequence:
 - The method decomposition displacements rad by coordinate functions applied, which selected boundary conditions. Using approximate Bubnov-Galerkin method, original partial derivatives fourth order reduced to ordinary second order;
 obtained averaging numerically.
 change stress amplitude oscillation time an elastic viscoelastic at different coefficients soil was obtained.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Nonlinear Vibrations for Multi-walled Carbon Nanotubes Embedded in an Elastic Medium

Nonlinear free vibration analysis of double-walled carbon nanotubes (DWCNTs) embedded in an elastic medium is studied in this paper based on classical (local) Euler-Bernoulli beam theory. Using the averaging method, the nonlinear free vibration responses of DWCNTs are obtained. The result is compared with the obtained results from the harmonic balance method for single-walled carbon nanotubes (...

متن کامل

Indentation of ellipsoidal and cylindrical elastic shells.

Thin shells are found in nature at scales ranging from viruses to hens' eggs; the stiffness of such shells is essential for their function. We present the results of numerical simulations and theoretical analyses for the indentation of ellipsoidal and cylindrical elastic shells, considering both pressurized and unpressurized shells. We provide a theoretical foundation for the experimental findi...

متن کامل

Nonlinear Dynamic Buckling of Viscous-Fluid-Conveying PNC Cylindrical Shells with Core Resting on Visco-Pasternak Medium

The use of intelligent nanocomposites in sensing and actuation applications has become quite common over the past decade. In this article, electro-thermo-mechanical nonlinear dynamic buckling of an orthotropic piezoelectric nanocomposite (PNC) cylindrical shell conveying viscous fluid is investigated. The composite cylindrical shell is made from Polyvinylidene Fluoride (PVDF) and reinforced by ...

متن کامل

Third Order Formulation for Vibrating Non-Homogeneous Cylindrical Shells in Elastic Medium

Third order shear deformation theory of cylindrical shells is employed to investigate the vibration characteristics of non-homogeneous cylindrical shells surrounded by an elastic medium. The kinematic relations are obtained using the strain-displacement relations of Donnell shell theory. The shell properties are considered to be dependent on both position and thermal environment. A suitable fun...

متن کامل

Torsional Stability of Cylindrical Shells with Functionally Graded Middle Layer on the Winkler Elastic Foundation

In this study, the torsional stability analysis is presented for thin cylindrical with the functionally graded (FG) middle layer resting on the Winker elastic foundation. The mechanical properties of functionally graded material (FGM) are assumed to be graded in the thickness direction according to a simple power law and exponential distributions in terms of volume fractions of the constituents...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pharmaceutical Negative Results

سال: 2022

ISSN: ['0976-9234', '2229-7723']

DOI: https://doi.org/10.47750/pnr.2022.13.s08.118